Sonderangebot Stämpflis juristische Lehrbücher: Bis Ende November profitieren Sie von 20% Rabatt auf folgende Lehr- und Praxisbücher.
Fokusthemen
Publikationen
Services
Autorinnen/Autoren
Verlag
Shop
LEXIA
Zeitschriften
SachbuchLOKISemaphor

Partitional Clustering via Nonsmooth Optimization

Clustering via Optimization

Inhalt

This updated book describes optimization models of clustering problems and clustering algorithms based on optimization techniques, including their implementation, evaluation, and applications. The book gives a comprehensive and detailed description of optimization approaches for solving clustering problems; the authors' emphasis on clustering algorithms is based on deterministic methods of optimization. The book also includes results on real-time clustering algorithms based on optimization techniques, addresses implementation issues of these clustering algorithms, and discusses new challenges arising from very large data and data with noise and outliers. The book is ideal for anyone teaching or learning clustering algorithms. It provides an accessible introduction to the field and it is well suited for practitioners already familiar with the basics of optimization.

  • Designed for a typical undergraduate, graduate, or dual-listed course with a semester-based calendar;
  • Puts theory in context, so readers gain knowledge about the most essential concepts and algorithms;
  • Covers essential terms, algorithms, and useful tools for learning and performing contemporary AI.

Bibliografische Angaben

Februar 2025, ca. 403 Seiten, Unsupervised and Semi-Supervised Learning, Englisch
Springer International Publishing
978-3-031-76511-7

Inhaltsverzeichnis

Schlagworte

Weitere Titel der Reihe: Unsupervised and Semi-Supervised Learning

Alle anzeigen

Weitere Titel zum Thema