Fokusthemen
Publikationen
Services
Autorinnen/Autoren
Verlag
Shop
LEXIA
Zeitschriften
SachbuchLOKISemaphor
Osteraktion: Bis zum 30.4.2025 von 20% Rabatt auf folgende Produkte profitieren. Code: NEST25
Mathematical Methods in Data Science

Mathematical Methods in Data Science

Bridging Theory and Applications with Python

Inhalt

Bridge the gap between theoretical concepts and their practical applications with this rigorous introduction to the mathematics underpinning data science. It covers essential topics in linear algebra, calculus and optimization, and probability and statistics, demonstrating their relevance in the context of data analysis. Key application topics include clustering, regression, classification, dimensionality reduction, network analysis, and neural networks. What sets this text apart is its focus on hands-on learning. Each chapter combines mathematical insights with practical examples, using Python to implement algorithms and solve problems. Self-assessment quizzes, warm-up exercises and theoretical problems foster both mathematical understanding and computational skills. Designed for advanced undergraduate students and beginning graduate students, this textbook serves as both an invitation to data science for mathematics majors and as a deeper excursion into mathematics for data science students.

Bibliografische Angaben

September 2025, Cambridge Mathematical Textbooks, Englisch
Cambridge Academic
978-1-009-50945-9

Inhaltsverzeichnis

Schlagworte

Weitere Titel der Reihe: Cambridge Mathematical Textbooks

Alle anzeigen

Weitere Titel zum Thema