Fokusthemen
Publikationen
Services
Autorinnen/Autoren
Verlag
Shop
LEXIA
Zeitschriften
SachbuchLOKISemaphor
Newsletteraktion: Abonnieren Sie jetzt unseren Newsletter und sichern Sie sich bis zum 8. August 2025 10% Rabatt auf Ihre Onlinebestellungen. Infos und Anmeldung.
Machine Learning with Julia

Machine Learning with Julia

An Algorithmic Exploration

Inhalt

This textbook offers a comprehensive and accessible introduction to machine learning with the Julia programming language. It bridges mathematical theory and real-world practice, guiding readers through both foundational concepts and advanced algorithms. Covering topics from essential principles like Kullback–Leibler divergence and eigen-analysis to cutting-edge techniques such as deep transfer learning and differential privacy, each chapter delivers clear explanations and detailed algorithmic treatments. Sample code accompanies every major topic, enabling hands-on learning and faster implementation.

By leveraging Julia’s powerful machine learning ecosystem -- including libraries such as Flux.jl, MLJ.jl, and more -- this book empowers readers to build robust, state-of-the-art machine learning models.

Ideal for students, researchers, and professionals alike, this textbook is designed for those seeking a solid theoretical foundation in machine learning, along with deep algorithmic insight and practical problem-solving inspiration.

Bibliografische Angaben

November 2025, ca. 418 Seiten, Machine Learning: Foundations, Methodologies, and Applications, Englisch
Springer EN
978-981-9696-88-8

Inhaltsverzeichnis

Schlagworte

Weitere Titel der Reihe: Machine Learning: Foundations, Methodologies, and Applications

Alle anzeigen

Weitere Titel zum Thema