Fokusthemen
Publikationen
Services
Autorinnen/Autoren
Verlag
Shop
LEXIA
Zeitschriften
SachbuchLOKISemaphor
Newsletteraktion: Abonnieren Sie jetzt unseren Newsletter und sichern Sie sich bis zum 8. August 2025 10% Rabatt auf Ihre Onlinebestellungen. Infos und Anmeldung.
Innere-Punkte-Verfahren mit Redundanzerkennung für die Quadratische Optimierung

Innere-Punkte-Verfahren mit Redundanzerkennung für die Quadratische ...

Inhalt

Die mathematische Modellformulierung aktueller, praxisrelevanter Entscheidungsprobleme resultiert schnell in quadratischen Optimierungsproblemen mit einigen tausend entscheidungsrelevanten Variablen und linearen Nebenbedingungen. Derzeitige Lösungsverfahren beziehen alle gegebenen Nebenbedingungen zur Lösungsbestimmung mit ein und verarbeiten so regelmäßig überflüssige Informationen. Für die Beschreibung und Bestimmung des Optimums genügt allerdings die Betrachtung einer Teilmenge der Nebenbedingungen.

Philipp Schade stellt Kriterien für quadratische Optimierungsprobleme vor, die es erlauben, überflüssige Nebenbedingungen frühzeitig zu identifizieren. Er integriert diese Kriterien in eine Klasse führender Lösungsverfahren und stellt damit ein modifiziertes Innere-Punkte-Verfahren vor. Der Autor eliminiert überflüssige Nebenbedingungen und reduziert sukzessiv die Problemgröße, die Iterationszahl und die Lösungszeit bis zum Auffinden einer optimalen Lösung. Dabei veranschaulicht er die Besonderheiten für den Begriff des Zentralen Pfades.

Bibliografische Angaben

September 2008, ca. 217 Seiten, Deutsch
Betriebswirtschaftlicher Verlag Gabler
978-3-8349-1019-6

Inhaltsverzeichnis

Schlagworte

Weitere Titel zum Thema