Fokusthemen
Publikationen
Services
Autorinnen/Autoren
Verlag
Shop
LEXIA
Zeitschriften
SachbuchLOKISemaphor
Osteraktion: Bis zum 30.4.2025 von 20% Rabatt auf folgende Produkte profitieren. Code: NEST25
Robust Subspace Estimation Using Low-Rank Optimization

Robust Subspace Estimation Using Low-Rank Optimization

Theory and Applications

Inhalt

Various fundamental applications in computer vision and machine learning require finding the basis of a certain subspace. Examples of such applications include face detection, motion estimation, and activity recognition. An increasing interest has been recently placed on this area as a result of significant advances in the mathematics of matrix rank optimization. Interestingly, robust subspace estimation can be posed as a low-rank optimization problem, which can be solved efficiently using techniques such as the method of Augmented Lagrange Multiplier. In this book, the authors discuss fundamental formulations and extensions for low-rank optimization-based subspace estimation and representation. By minimizing the rank of the matrix containing observations drawn from images, the authors demonstrate  how to solve four fundamental computer vision problems, including video denosing, background subtraction, motion estimation, and activity recognition.

Bibliografische Angaben

August 2016, 114 Seiten, The International Series in Video Computing, Englisch
Springer Nature EN
978-3-319-35248-0

Inhaltsverzeichnis

Schlagworte

Weitere Titel der Reihe: The International Series in Video Computing

Alle anzeigen

Weitere Titel zum Thema