Kommentaraktion: Bis 31.10.2024 gibt es mit dem Code COMM24 15% Rabatt auf folgende Stämpfli Kommentare.
Fokusthemen
Publikationen
Services
Autorinnen/Autoren
Verlag
Shop
LEXIA
Zeitschriften
SachbuchLOKISemaphor

Implementation and Interpretation of Machine and Deep Learning to Applied Subsurface Geological Problems

Prediction Models Exploiting Well-Log Information

Inhalt

Implementation and Interpretation of Machine and Deep Learning to Applied Subsurface Geological Problems: Prediction Models Exploiting Well-Log Information explores machine and deep learning models for subsurface geological prediction problems commonly encountered in applied resource evaluation and reservoir characterization tasks. The book provides insights into how the performance of ML/DL models can be optimized-and sparse datasets of input variables enhanced and/or rescaled-to improve prediction performances. A variety of topics are covered, including regression models to estimate total organic carbon from well-log data, predicting brittleness indexes in tight formation sequences, trapping mechanisms in potential sub-surface carbon storage reservoirs, and more.

Each chapter includes its own introduction, summary, and nomenclature sections, along with one or more case studies focused on prediction model implementation related to its topic.

Bibliografische Angaben

Januar 2025, Englisch
Elsevier
978-0-443-26510-5

Inhaltsverzeichnis

Schlagworte

Weitere Titel zum Thema