Offre spéciale sur les Précis de droit Stämpfli : Jusqu’à fin novembre, profitez d’un rabais de 20% sur les manuels d’enseignement et les livres pour la pratique suivants.
Thèmes principaux
Publications
Services
Auteurs
Éditions
Shop

K3 Surfaces and Their Moduli

Contenu

This book provides an overview of the latest developments concerning the moduli of K3 surfaces. It is aimed at algebraic geometers, but is also of interest to number theorists and theoretical physicists, and continues the tradition of related volumes like “The Moduli Space of Curves” and “Moduli of Abelian Varieties,” which originated from conferences on the islands Texel and Schiermonnikoog and which have become classics.K3 surfaces and their moduli form a central topic in algebraic geometry and arithmetic geometry, and have recently attracted a lot of attention from both mathematicians and theoretical physicists. Advances in this field often result from mixing sophisticated techniques from algebraic geometry, lattice theory, number theory, and dynamical systems. The topic has received significant impetus due to recent breakthroughs on the Tate conjecture, the study of stability conditions and derived categories, and links with mirror symmetry and string theory. At the same time, the theory of irreducible holomorphic symplectic varieties, the higher dimensional analogues of K3 surfaces, has become a mainstream topic in algebraic geometry.Contributors: S. Boissière, A. Cattaneo, I. Dolgachev, V. Gritsenko, B. Hassett, G. Heckman, K. Hulek, S. Katz, A. Klemm, S. Kondo, C. Liedtke, D. Matsushita, M. Nieper-Wisskirchen, G. Oberdieck, K. Oguiso, R. Pandharipande, S. Rieken, A. Sarti, I. Shimada, R. P. Thomas, Y. Tschinkel, A. Verra, C. Voisin.

Informations bibliographiques

mai 2016, 399 Pages, Progress in Mathematics, Anglais
Springer Nature EN
978-3-319-29958-7

Sommaire

Mots-clés

Autres titres de la collection: Progress in Mathematics

Afficher tout

Autres titres sur ce thème