Offre spéciale sur les Précis de droit Stämpfli : Jusqu’à fin novembre, profitez d’un rabais de 20% sur les manuels d’enseignement et les livres pour la pratique suivants.
Thèmes principaux
Publications
Services
Auteurs
Éditions
Shop

Advances in Data-Driven Modeling, Fault Detection, and Fault Identification

Applications to Chemical Processes

Contenu

Advances in Data-Driven Modeling, Fault Detection, and Fault Identification: Applications to Chemical Processes is an accumulation of research on data-driven modeling techniques, and their application towards robust modeling, fault detection and fault identification. The book covers a wide range of basic to advanced empirical techniques in comprehensive detail, and provides a easyto-read guide for academic or industrial researchers that are interested in applying these techniques towards their respective fields. The book starts with exposing the scope of the book, in addition to a brief rundown of the methods discussed, and their importance to academic research and industrial applications. It will also describe some of the chemical processes that will be used to validate and compare the various data-driven techniques, which include the Tennessee Eastman Process and a Fischer-Tropsch bench scale setup. It discusses a first category of the methods, that covers basic and advanced robust empirical techniques, followed by a second category of the methods discussed, that covers prominent empirical statistical charts used to detect faults in multivariate systems, and finally a third category of the methods, that covers conventional and novel multiclass classification machine learning techniques that can be used to accurately differentiate in batch or real-time between different fault classes in industrial process or academic applications.

Informations bibliographiques

mai 2025, Anglais
Elsevier
978-0-443-33482-5

Sommaire

Mots-clés

Autres titres sur ce thème