Thèmes principaux
Publications
Services
Auteurs
Éditions
Shop
Advanced Linear Modeling

Advanced Linear Modeling

Statistical Learning and Dependent Data

Contenu

Now in its third edition, this companion volume to Ronald Christensen’s  Plane Answers to Complex Questions  uses three fundamental concepts from standard linear model theory—best linear prediction, projections, and Mahalanobis distance— to extend standard linear modeling into the realms of Statistical Learning and Dependent Data.  
This new edition features a wealth of new and revised content.  In Statistical Learning it delves into nonparametric regression, penalized estimation (regularization), reproducing kernel Hilbert spaces, the kernel trick, and support vector machines.  For Dependent Data it uses linear model theory to examine general linear models, linear mixed models, time series, spatial data, (generalized) multivariate linear models, discrimination, and dimension reduction.  While numerous references to  Plane Answers  are made throughout the volume,  Advanced Linear Modeling  can be used on its own given a solid background in linear models.  Accompanying R code for the analyses is available online.

Informations bibliographiques

décembre 2019, 608 Pages, Springer Texts in Statistics, Anglais
Springer Nature EN
978-3-030-29163-1

Sommaire

Mots-clés

Autres titres de la collection: Springer Texts in Statistics

Afficher tout

Autres titres sur ce thème