This book provides a practical guide to federated deep learning for healthcare including fundamental concepts, framework, and the applications comprising of domain adaptation, model distillation, and transfer learning. It covers concerns in model fairness, data bias, regulatory compliance, and ethical dilemmas.
This book provides a practical guide to federated deep learning for healthcare including fundamental concepts, framework, and the applications comprising of domain adaptation, model distillation, and transfer learning. It covers concerns in model fairness, data bias, regulatory compliance, and ethical dilemmas.