Revolutionize the calculation of mixed derivatives with this groundbreaking text
Transform and inverse transform techniques, such as the Fourier transform and the Laplace transform, enable scientists and engineers to conduct research and design in transformed domains where the work is simpler, after which the results can be converted back into the real domain where they can be applied or actualized. This latter stage in the process, the inverse transform, ordinarily poses significant challenges. New transform/inverse transform techniques carry extraordinary potential to produce revolutionary new science and engineering solutions.
Discrete Taylor Transform and Inverse Transform presents the groundbreaking discovery of a new transform technique. Placing a novel emphasis on the "position variable" and "derivative operator" as main actors, the Discrete Taylor Transform and Inverse Transform (D-TTIT) will facilitate the calculation of mixed derivatives of multivariate functions to any desired order. The result promises to create new applications not only in its allied fields of quantum physics and quantum engineering, but potentially much more widely.
Readers will also find:
Discrete Taylor Transform and Inverse Transform is ideal for any scientific or engineering professional looking to understand a cutting-edge research and design tool.