Sonderangebot Stämpflis juristische Lehrbücher: Bis Ende November profitieren Sie von 20% Rabatt auf folgende Lehr- und Praxisbücher.
Fokusthemen
Publikationen
Services
Autorinnen/Autoren
Verlag
Shop
LEXIA
Zeitschriften
SachbuchLOKISemaphor

Deep Learning Classifiers with Memristive Networks

Theory and Applications
Herausgegeben von:James, Alex Pappachen

Inhalt

This book introduces readers to the fundamentals of deep neural network architectures, with a special emphasis on memristor circuits and systems. At first, the book offers an overview of neuro-memristive systems, including memristor devices, models, and theory, as well as an introduction to deep learning neural networks such as multi-layer networks, convolution neural networks, hierarchical temporal memory, and long short term memories, and deep neuro-fuzzy networks. It then focuses on the design of these neural networks using memristor crossbar architectures in detail. The book integrates the theory with various applications of neuro-memristive circuits and systems. It provides an introductory tutorial on a range of issues in the design, evaluation techniques, and implementations of different deep neural network architectures with memristors.

Bibliografische Angaben

April 2019, 213 Seiten, Modeling and Optimization in Science and Technologies, Englisch
Springer Nature EN
978-3-030-14522-4

Inhaltsverzeichnis

Schlagworte

Weitere Titel der Reihe: Modeling and Optimization in Science and Technologies

Alle anzeigen

Weitere Titel zum Thema