Sonderangebot Stämpflis juristische Lehrbücher: Bis Ende November profitieren Sie von 20% Rabatt auf folgende Lehr- und Praxisbücher.
Fokusthemen
Publikationen
Services
Autorinnen/Autoren
Verlag
Shop
LEXIA
Zeitschriften
SachbuchLOKISemaphor

Asymptotic Expansion of a Partition Function Related to the Sinh-model

Inhalt

This book elaborates on the asymptotic behaviour, when N is large, of certain N-dimensional integrals which typically occur in random matrices, or in 1+1 dimensional quantum integrable models solvable by the quantum separation of variables. The introduction presents the underpinning motivations for this problem, a historical overview, and a summary of the strategy, which is applicable in greater generality. The core  aims at proving an expansion up to o(1) for the logarithm of the partition function of the sinh-model. This is achieved by a combination of potential theory and large deviation theory so as to grasp the leading asymptotics described by an equilibrium measure, the Riemann-Hilbert approach to truncated Wiener-Hopf in order to analyse the equilibrium measure, the Schwinger-Dyson equations and the boostrap method to finally obtain an expansion of correlation functions and the one of the partition function. This book is addressed to researchers working in random matrices, statistical physics or integrable systems, or interested in recent developments of asymptotic analysis in those fields.

Bibliografische Angaben

Juli 2018, 222 Seiten, Mathematical Physics Studies, Englisch
Springer Nature EN
978-3-319-81499-5

Inhaltsverzeichnis

Schlagworte

Weitere Titel der Reihe: Mathematical Physics Studies

Alle anzeigen

Weitere Titel zum Thema