Kennen Sie schon unseren Geschäftskundenservice? Wir beraten Sie gerne.
Fokusthemen
Publikationen
Services
Autorinnen/Autoren
Verlag
Shop
LEXIA
Zeitschriften
SachbuchLOKISemaphor
Anisotropic Scaling Of Random Fields With Long-range Dependence: Scaling Limits Of Random Fields With Applications

Anisotropic Scaling Of Random Fields With Long-range Dependence: ...

Inhalt

Scaling (zooming in or out) is taking a close or distant view of an object. Infinite scaling (the scaling parameter tends to zero or infinity) may lead to a limit which is self-similar and much simpler than the original object. For instance, the classical Donsker's theorem says that all weakly dependent stationary processes with finite variance scale to Brownian motion at large scales. In the case of a random field indexed by two-dimensional parameter, both types of scaling can be anisotropic, meaning that the horizontal and vertical axes are scaled at different rate determined by the ratio γ>0 of the scaling exponents along the axes. The natural questions under such scaling are whether the scaling limits exist for any γ>0, and what are these limits are. The book tries to answer these questions. It introduces the concept of scaling transition and discusses its existence for a natural class of planar random fields including Gaussian, linear and some nonlinear ones. The scaling limits are identified and exhibit a surprising trichitomy at a critical point γ0, with 'unbalanced' limits having unusual path properties and dependence structure along one of the coordinate axes. Scaling transition occurs in applied sciences (telecommunications and econometrics) when aggregating independent processes with long-range dependence in which case 'unbalanced' limits are classical Gaussian or stable random fields.

Bibliografische Angaben

Januar 2026, Englisch
Ingram Publishers Services
978-981-1249-41-9

Schlagworte

Weitere Titel zum Thema