Sonderangebot Stämpflis juristische Lehrbücher: Bis Ende November profitieren Sie von 20% Rabatt auf folgende Lehr- und Praxisbücher.
Fokusthemen
Publikationen
Services
Autorinnen/Autoren
Verlag
Shop
LEXIA
Zeitschriften
SachbuchLOKISemaphor

Advanced Linear Modeling

Statistical Learning and Dependent Data

Inhalt

Now in its third edition, this companion volume to Ronald Christensen’s  Plane Answers to Complex Questions  uses three fundamental concepts from standard linear model theory—best linear prediction, projections, and Mahalanobis distance— to extend standard linear modeling into the realms of Statistical Learning and Dependent Data.  
This new edition features a wealth of new and revised content.  In Statistical Learning it delves into nonparametric regression, penalized estimation (regularization), reproducing kernel Hilbert spaces, the kernel trick, and support vector machines.  For Dependent Data it uses linear model theory to examine general linear models, linear mixed models, time series, spatial data, (generalized) multivariate linear models, discrimination, and dimension reduction.  While numerous references to  Plane Answers  are made throughout the volume,  Advanced Linear Modeling  can be used on its own given a solid background in linear models.  Accompanying R code for the analyses is available online.

Bibliografische Angaben

Januar 2021, 608 Seiten, Springer Texts in Statistics, Englisch
Springer Nature EN
978-3-030-29166-2

Inhaltsverzeichnis

Schlagworte

Weitere Titel der Reihe: Springer Texts in Statistics

Alle anzeigen

Weitere Titel zum Thema