Thèmes principaux
Publications
Services
Auteurs
Éditions
Shop
Statistics for Biological Networks

Statistics for Biological Networks

How to Infer Networks from Data

Contenu

An introduction to a new paradigm in social, technological, and scientific discourse, this book presents an overview of statistical methods for describing, modeling, and inferring biological networks using genomic and other types of data. It covers a large variety of modern statistical techniques, such as sparse graphical models, state space models, Boolean networks, and hidden Markov models. The authors address gene transcription data, microRNAs, ChIP-chip, and RNAi data. Along with end-of-chapter exercises, the text includes many real-world examples with implementations using a dedicated R package.

Informations bibliographiques

janvier 2026, env. 320 Pages, Chapman & Hall/CRC Interdisciplinary Statistics, Anglais
Taylor and Francis
978-1-4398-4147-1

Sommaire

Mots-clés

Autres titres de la collection: Chapman & Hall/CRC Interdisciplinary Statistics

Afficher tout

Autres titres sur ce thème