Tackle the core challenges related to enterprise-ready graph representation and learning. With this hands-on guide, applied data scientists, machine learning engineers, and practitioners will learn how to build an E2E graph learning pipeline. You'll explore core challenges at each pipeline stage, from data acquisition and representation to real-time inference and feedback loop retraining.
Drawing on their experience building scalable and production-ready graph learning pipelines, the authors take you through the process of building the E2E graph learning pipeline in a world of dynamic and evolving graphs.