Offre spéciale sur les Précis de droit Stämpfli : Jusqu’à fin novembre, profitez d’un rabais de 20% sur les manuels d’enseignement et les livres pour la pratique suivants.
Thèmes principaux
Publications
Services
Auteurs
Éditions
Shop

Hasse-Schmidt Derivations on Grassmann Algebras

With Applications to Vertex Operators

Contenu

This book provides a comprehensive advanced multi-linear algebra course based on the concept of Hasse-Schmidt derivations on a Grassmann algebra (an analogue of the Taylor expansion for real-valued functions), and shows how this notion provides a natural framework for many ostensibly unrelated subjects: traces of an endomorphism and the Cayley-Hamilton theorem, generic linear ODEs and their Wronskians, the exponential of a matrix with indeterminate entries (Putzer's method revisited), universal decomposition of a polynomial in the product of two monic polynomials of fixed smaller degree, Schubert calculus for Grassmannian varieties, and vertex operators obtained with the help of Schubert calculus tools (Giambelli's formula). Significant emphasis is placed on the characterization of decomposable tensors of an exterior power of a free abelian group of possibly infinite rank, which then leads to the celebrated Hirota bilinear form of the Kadomtsev-Petviashvili (KP) hierarchy describingthe Plücker embedding of an infinite-dimensional Grassmannian. By gathering ostensibly disparate issues together under a unified perspective, the book reveals how even the most advanced topics can be discovered at the elementary level.

Informations bibliographiques

mai 2018, 195 Pages, IMPA Monographs, Anglais
Springer Nature EN
978-3-319-81134-5

Sommaire

Mots-clés

Autres titres de la collection: IMPA Monographs

Afficher tout

Autres titres sur ce thème