Focus
Publications
Services
Auteurs
Éditions
Shop
Action newsletter : Abonnez-vous dès maintenant à notre newsletter et bénéficiez de 10 % de réduction sur vos commandes en ligne jusqu’au 8 août 2025. Infos et inscription.
Groupes algébriques semi-simples en dimension cohomologique ≤2

Groupes algébriques semi-simples en dimension cohomologique ≤2

Semisimple algebraic groups in cohomological dimension ≤2

Contenu

La théorie des groupes algébriques sur un corps arbitraire est l’une des branches les plus merveilleuses des mathématiques modernes. Cette monographie porte sur les groupes algébriques semi-simples définis sur un corps k de dimension cohomologique séparable <=2  et la cohomologie galoisienne d’iceux. La question ouverte la plus importante est la conjecture II de Serre (1962) qui prédit l’annulation de la cohomologie galoisienne d’un groupe semi-simple simplement connexe.
Utilisant principalement des techniques de groupes algébriques, on couvre tous les cas connus de la conjecture: les cas classiques (dus à Bayer-Fluckiger and Parimala) ainsi que les avancées sur les cas exceptionnels restants (par exemple de type E8). Ceci s’applique à la classification des groupes semi-simples.

The theory of algebraic groups over arbitrary fields is one of the most beautiful branches of modern mathematics. This monograph deals with semisimple algebraic groups over a general field k of separable cohomological dimension ^rimala), and some perspectives are given on the remaining exceptional cases (e.g., G of type E8). Applications to the classification of semisimple k-groups are presented.

Informations bibliographiques

mai 2019, 169 pages, Lecture Notes in Mathematics, Français
Springer Nature EN
978-3-030-17271-8

Sommaire

Mots-clés

Autres titres de la collection: Lecture Notes in Mathematics

Afficher tout

Autres titres sur ce thème