This book introduces the state-of-the-art understanding on domain-informed machine learning (DIML) for advanced manufacturing. Methods and case studies presented in this volume show how complicated engineering phenomena and mechanisms are integrated into machine learning problem formulation and methodology development. Ultimately, these methodologies contribute to quality control for smart personalized manufacturing. The topics include domain-informed feature representation, dimension reduction for personalized manufacturing, fabrication-aware modeling of additive manufacturing processes, small-sample machine learning for 3D printing quality, optimal compensation of 3D shape deviation in 3D printing, engineering-informed transfer learning for smart manufacturing, and domain-informed predictive modeling for nanomanufacturing quality. Demonstrating systematically how the various aspects of domain-informed machine learning methods are developed for advanced manufacturing such as additive manufacturing and nanomanufacturing, the book is ideal for researchers, professionals, and students in manufacturing and related engineering fields.