Sonderangebot Stämpflis juristische Lehrbücher: Bis Ende November profitieren Sie von 20% Rabatt auf folgende Lehr- und Praxisbücher.
Fokusthemen
Publikationen
Services
Autorinnen/Autoren
Verlag
Shop
LEXIA
Zeitschriften
SachbuchLOKISemaphor

Practical Mathematical Optimization

Basic Optimization Theory and Gradient-Based Algorithms

Inhalt

This textbook presents a wide range of tools for a course in mathematical optimization for upper undergraduate and graduate students in mathematics, engineering, computer science, and other applied sciences.  Basic optimization principles are presented with emphasis on gradient-based numerical optimization strategies and algorithms for solving both smooth and noisy discontinuous optimization problems. Attention is also paid to the difficulties of expense of function evaluations and the existence of multiple minima that often unnecessarily inhibit the use of gradient-based methods. This second edition addresses further advancements of gradient-only optimization strategies to handle discontinuities in objective functions. New chapters discuss the construction of surrogate models as well as new gradient-only solution strategies and numerical optimization using Python. A special Python module is electronically available (via springerlink) that makes the new algorithms featured in the text easily accessible and directly applicable. Numerical examples and exercises are included to encourage senior- to graduate-level students to plan, execute, and reflect on numerical investigations. By gaining a deep understanding of the conceptual material presented, students, scientists, and engineers will be  able to develop systematic and scientific numerical investigative skills.

 

Bibliografische Angaben

Januar 2019, 372 Seiten, Springer Optimization and Its Applications, Englisch
Springer Nature EN
978-3-030-08486-8

Inhaltsverzeichnis

Schlagworte

Weitere Titel der Reihe: Springer Optimization and Its Applications

Alle anzeigen

Weitere Titel zum Thema